PHYSICAL AND CHEMICAL PROPERTIES

1. What is a physical property?
2. Give 3 examples of physical properties.
3. Describe maple syrup using its physical properties.
4. When do physical changes take place?
5. Give 3 examples of physical changes.
6. What do chemical properties describe?
7. Give 3 examples of chemical changes.
8. Identify each change with a P (physical property) or C (chemical property)
a. the color of a solution in a beaker...
b. how much mass a mixture has...
c. how flammable the liquid was...
d. the length of a room...
e. whether the metal could oxidize (rust)...
f. the shape of an object...
g. how dense an object is....

Identify each change with a P (physical change) or C (chemical change)
___a. melting ice
b. burning paper
c. decomposition of old leaves
d. breaking glass
e. cooking
f. cutting a copper wire
g. tearing paper
h. rusting metal
i. evaporation of water
_j. painting wood

DENSITY REVIEW

1. What is the density of a 32 g block which measures 2 cm on each side? (show your work)
2. Using everyday experience as your guide, match the following substances with their correct densities. Remember, the density of water is $1.00 \mathrm{~g} / \mathrm{mL}$.
density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$
\qquad air
a. 0.65
___ wood
b. 2.30
___ glass
c. 1.00

-

ice
d. 0.92
__ water
e. 0.0012
3. A rock has a mass of 9.2 g and is placed in a graduated cylinder containing 24 ml water; the water level increases to 30.8 ml .

What is the volume of the rock? (show your work)

What is the density of the rock? (show your work)
4. If two objects are of equal mass, the one with the largest volume has the largest / smallest density.
5. If two objects are of equal volume, the one with the largest mass has the largest / smallest density.
6. Calculate: (hint: use formulas from foldable) (show your work)
a. $m=10 \mathrm{~g}$

$$
v=20 \mathrm{ml}
$$

$$
D=\ldots \quad \mathrm{g} / \mathrm{cm}^{3}
$$

c. $v=1.2 \mathrm{ml}$

$$
D=0.8 \mathrm{~g} / \mathrm{cm}^{3}
$$

$\mathrm{m}=$ \qquad
b. $m=12.5 \mathrm{~g}$
$D=6.25 \mathrm{~g} / \mathrm{cm}^{3}$
$v=\ldots \mathrm{cm}^{3}$
d. $v=120 \mathrm{ml}$
$m=40 \mathrm{~g}$
$D=\ldots \quad \mathrm{g} / \mathrm{cm}^{3}$

